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packing (stem density). Our results indicate that decreas-
ing functional diversity and a significant influence of CWM 
traits were linked to increasing AGB for all eight traits in 
this forest supporting the MR hypothesis. Interestingly, 
CWP was primarily influenced by NC and MR indirectly 
via their influence on canopy packing. Maximum height 
explained more of the variation in both AGB and CWP than 
any of the other plant functional traits. Together, our results 
suggest that multiple mechanisms operate simultaneously 
to influence EF, and understanding their relative impor-
tance will help to elucidate the role of biodiversity in main-
taining ecosystem function.

Keywords Complementarity hypothesis · Forest carbon 
dynamics · Functional diversity · Functional trait · Mass-
ratio effect

Introduction

Understanding the relationship between biodiversity (B) 
and ecosystem function (EF) is an important goal in ecol-
ogy (Díaz and Cabido 2001; Hooper et al. 2005; Tilman 
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that address B–EF relationships: niche complementarity 
(NC) and the mass-ratio (MR) effect. We tested the rela-
tive importance of these hypotheses in a subtropical old-
growth forest on the island nation of Taiwan for two EFs: 
aboveground biomass (ABG) and coarse woody produc-
tivity (CWP). Functional dispersion (FDis) of eight plant 
functional traits was used to evaluate complementarity of 
resource use. Under the NC hypothesis, EF will be posi-
tively correlated with FDis. Under the MR hypothesis, EF 
will be negatively correlated with FDis and will be signifi-
cantly influenced by community-weighted mean (CWM) 
trait values. We used path analysis to assess how these two 
processes (NC and MR) directly influence EF and may 
contribute indirectly to EF via their influence on canopy 
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et al. 2014) that has taken on an added urgency due to 
the global loss of species (Rockström et al. 2009; Cos-
tello et al. 2013). Forests are important components of the 
global carbon cycle (Pan et al. 2011), and forest ecosystem 
function has often been characterized by assessing woody 
productivity (carbon flux) and standing biomass (carbon 
stock). Perhaps, the two most important and widely inves-
tigated B-EF hypotheses are niche complementarity (NC) 
and mass-ratio (MR) effects. The NC hypothesis proposes 
that increasing species richness increases resource-use effi-
ciency and thereby enhances ecosystem function (Tilman 
1997; Tilman et al. 2014). In contrast, the MR hypothesis 
proposes that EF is regulated by the dominant species in 
the community (Grime 1998). Under the MR hypothesis, 
variation in EF is explained largely by the functional iden-
tity of the dominant species, which can be estimated using 
the community-weighted mean of functional trait values 
(Garnier et al. 2004; Díaz et al. 2007; Mokany et al. 2008; 
Finegan et al. 2015). These two hypotheses are not neces-
sarily mutually exclusive (Mokany et al. 2008) and under-
standing the relative contributions of NC and MR effects 
on ecosystem processes can inform forest management 
and conservation. Despite much effort in understanding the 
relative importance of these two mechanisms, uncertain-
ties remain (Díaz and Cabido 2001; Hooper et al. 2005; 
Díaz et al. 2007). For example, stand age (Zhang and Chen 
2015) and local spatial structure (Réjou-Méchain et al. 
2014) have significant effects on the aboveground biomass 
and may generate uncertainty in understanding B–EF rela-
tionships. Moreover, the influence of environmental fac-
tors, such as soil resource availability, may generate spatial 
variation in forest productivity through variation in nutrient 
availability (LeBauer and Treseder 2008).

In forests, the investigation of B–EF relationships has 
focused almost exclusively on observational studies of extant 
spatial variation which have yielded mixed results. Paquette 
and Messier (2011) demonstrated a strong positive relation-
ship between functional diversity and forest productivity in 
boreal forests, but not in adjacent temperate forest. Ruiz-Jaen 
and Potvin (2011) found that functional composition was a 
better predictor of carbon storage than was species richness, 
and the effects of species richness and functional diversity 
were negative. Chisholm et al. (2013) analyzed local varia-
tion within 25 temperate and tropical forests and discovered 
that the relationship of tree species richness to forest biomass 
and productivity varied among sites and with spatial grain, 
with a preponderance of significant positive relationships 
at small grains (0.04 ha) becoming mixed in direction and 
mostly insignificant at larger grains (1 ha). These conflict-
ing patterns may be a result of a shift in the relative impor-
tance of NC and MR among sites, or may indicate that NC 
and MR operate simultaneously (Grace et al. 2016). Though 
experimental studies enable stronger inference in principle 

(e.g., Fargione et al. 2007), the resources required to manipu-
late compositions and the time required to observe treatment 
responses makes experiments more challenging in forests 
(but see Potvin et al. 2011).

Assuming that functional niche differentiation underlies 
NC, functional diversity indices should outperform taxo-
nomic diversity indices, such as species richness in predict-
ing EF (Mason et al. 2005; Villéger et al. 2008; Laliberté 
and Legendre 2010). Functional traits have been linked to 
forest tree abundance dynamics (Li et al. 2015) and compe-
tition and co-existence (Kunstler et al. 2016). Particularly, 
functional dispersion (FDis), which quantifies the mean 
distance in multidimensional trait space of individual spe-
cies to the centroid of all species, can be conceptualized 
as the degree of trait dissimilarity among species within 
a community (Mason et al. 2005; Laliberté and Legendre 
2010). Specifically, higher functional dispersion suggests 
low-resource competition as a result of high niche differen-
tiation (Laliberté and Legendre 2010; Mason et al. 2005). 
Thus, if NC drives EF, then ecosystem functioning should 
increase with increasing FDis. Alternatively, the MR effect 
suggests that EF is regulated by the dominant species in 
the community and is weakly influenced by less abundant 
species. Thus, if MR drives EF, then ecosystem function-
ing should be more strongly influenced by community-
weighted mean (CWM) trait values and negatively related 
to FDis, as the dominant trait value (not the diversity of 
traits) drives EF.

In this study, we used path analysis to investigate how 
the functional diversity of a tree community is related to 
ecosystem functions in a taxonomically and functionally 
diverse subtropical old-growth forest in Taiwan. We ana-
lyzed how spatial variation in two ecosystem functions 
(EF)—aboveground biomass (AGB) and coarse woody 
productivity (CWP)—were related to the bottom–up effect 
of environmental conditions (soil properties), stem density, 
functional dispersion (FDis), and CWM trait values of the 
tree community. We analyzed eight putatively important 
plant functional traits which are known to impact the sur-
vival and growth of trees at our study site (Iida et al. 2014). 
We evaluated the following three hypotheses: H1 EF is 
significantly positively related to tree functional diversity 
(FDis), in accordance with niche complementarity (NC) 
and consistent with the previous findings of a positive rela-
tionship between tree species richness and AGB at this site 
(McEwan et al. 2011a). H2 In accordance with the mass-
ratio hypothesis (MR), EF is strongly related to the func-
tional identity of the community as measured by CWM trait 
values and negatively related to FDis (Díaz et al. 2007). H3 
The effects of NC and MR on EF are mediated by stem 
density (canopy packing), because greater stem density is 
associated with both more diversity and more biomass and 
productivity (Chisholm et al. 2013).
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Methods

Study site

This study was conducted at the Fushan Forest Dynamics 
Plot (hereafter Fushan; 24°45′N, 121°33′E) in northern 
Taiwan. Climate at the site is subtropical with an aver-
age annual temperature and precipitation of 18.2 °C and 
4271 mm, respectively (Su et al. 2007). Fushan is an old-
growth forest that has been protected by the aborigines for 
centuries (Bureau of Aborignial Affairs 1911). It is also 
susceptible to frequent typhoon strikes with a mean of 0.74 
typhoons per year between 1951 and 2005 (Lin et al. 2011; 
Yao et al. 2015; Chi et al. 2015). Much of the precipitation 
at Fushan is from the monsoon in the winter and frequent 
typhoons in the summer. Elevation in Fushan ranges from 
600 to 733 m above sea level.

The 25 ha (500 m × 500 m) Fushan plot was cen-
sused in 2003–2004 and 2008–2009 by the Taiwan For-
estry Research Institute, the Forestry Bureau of Taiwan, 
and the National Taiwan University. The 25 ha plot was 
divided into a grid of 625 20 m × 20 m quadrats. Fol-
lowing Condit (1998), all woody stems with diameter 
at breast height (DBH) ≥1 cm were measured, tagged, 
mapped, and identified to species. A total of 110 woody 
species, representing 67 genera and 39 families, were 
documented (Su et al. 2007). Dominant species include 
Limlia uraiana, Castanopsis cuspidata, Engelhardtia 
roxburghiana, Pyrenaria shinkoensis, and Meliosma 
squamulata (Su et al. 2007).

Each 0.04 ha quadrat (20 m × 20 m) was treated as an 
observational unit in our analyses. We included only stems 
with DBH ≥5 cm (90 woody species), because these are 
responsible for almost all coarse woody productivity and 
aboveground biomass. The relative basal area of trees 
≥5 cm DBH of each species in each quadrat was calcu-
lated based on the second census to construct a community 
composition matrix (quadrat by species), which was then 
used as weighing factors for the calculation of functional 
diversity.

Soil properties

Soil samples were collected from 80 cells that ranged in 
size from 40 m × 40 m to 80 m × 100 m. For each cell, 
four soil samples were collected, mixed, air-dried, and 
sieved with 2 mm mesh size before physical and chemi-
cal analyses. Nine soil variables, including soil pH, elec-
trical conductivity, organic carbon, available N, available 
P, available K, soil exchangeable Ca, Mg, and Na content, 
were analyzed for each cell (Shen et al. 2013). The geosta-
tistical software (Surfer 7.0) was used to produce the soil 

distribution map for the plot, and then, Kriging was used to 
estimate soil properties for each 20 m × 20 m quadrat. To 
account for collinearity among soil variables, the first three 
principal component axes of the quadrat-level soil variables 
that explained most variations were used for the subsequent 
analyses. Principle component 1 explained 38.7 % of vari-
ation and represents a gradient from areas with high avail-
able K, electrical conductivity, organic carbon, Ca, and Mg 
(low PC1 scores) to areas with low amounts of these soil 
properties. Principle component 2 represents an axis of var-
iation describing a shift from areas with high pH (low PC2 
scores) to areas with low pH. Principle component 3 repre-
sents a gradient from areas with high available P (low PC3 
scores) to areas with high available N and Na (high PC3 
scores; loadings shown in Electronic Supplemental Mate-
rial Table A1). Principle components 2 and 3 explain 18.6 
and 13.6 % of variation, respectively.

Functional traits, functional identity, and functional 
diversity

Mean functional trait values for each species were calcu-
lated based on measurements of the six largest individuals 
of each species in the summer (June to August) of 2009. 
Tree heights were measured using measuring poles (for tree 
height ≤15 m) or laser rangefinders (for tree height >15 m), 
and species maximum tree height (Hmax) was estimated as 
the mean height of these six largest individuals. Crown radii 
were measured in the eight principal directions (N, NE, E, 
SE, S, SW, W, and NW) from the approximate centre to 
the edge of the crown, and crown area was calculated as 
π × CR2 (CR: the geometric mean of crown radii). Residu-
als of the linear function between crown area and basal area 
of individual stems (CABA) were calculated, and the mean 
residuals were calculated for each species as a measure 
of the spread of the crown after correcting for tree size—
higher values are expected to be associated with higher sus-
ceptibility to wind damage and higher shade tolerance.

Leaf traits were measured on three sun leaves collected 
from each of the focal individuals. Collected leaves were 
immediately placed in a cool box and covered with wet tis-
sue. On the same day of leaf collection, petioles and rachis 
(of compound leaves) were removed and fresh leaf mass 
was measured. Leaf area (LA; m2) for each leaf was meas-
ured using the software Image J (NIH Image; http://rsb.info.
nih.gov/ij/) applied to a scanned image of the leaf beside a 
5 cm scale bar. Each leaf was dried to a constant weight at 
70 °C and then weighed. We calculated leaf mass per area 
(LMA; g m−2) and leaf dry matter content (LDMC; leaf 
dry mass/fresh mass) for each leaf. Mass-based concentra-
tions of organic leaf nitrogen (LeafN, %) and phosphorous 
(LeafP, %) were determined by two microplate methods 

http://rsb.info.nih.gov/ij/
http://rsb.info.nih.gov/ij/
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(Huang et al. 2011; Iida et al. 2014). LA was highly skewed 
and, therefore, log transformed for subsequent analyses.

Wood density (WD; strictly wood specific gravity; 
g cm−3) values for each species were based on wood sam-
ples from five individuals from outside the boundaries of 
the permanent plot (minimum DBH = 10 cm). Wood cores 
were collected with an increment borer in the winter of 
2010 (from December 2010 to January 2011) and broken 
into 5 mm segments in the lab. Fresh volume for each seg-
ment was determined using the water displacement method, 
and dry weight was measured after oven-drying at 80 °C. 
Wood density for each segment was calculated by divid-
ing dry weight by fresh volume, and wood density for each 
tree was calculated as the weighted average over segments, 
weighting by the stem cross-sectional area in each succes-
sive concentric ring (Wright et al. 2010). The pairwise trait 
relationships are shown in Electronic Supplemental Mate-
rial Fig. A1.

Despite considerable effort, we were unable to obtain 
trait data for all species in our study area. Thus, our cal-
culations of functional diversity were based on 80 spe-
cies for which we had data on three or more traits meas-
ured per species, as we felt that we would not accurately 
capture a species’ functional trait strategy with fewer than 
three traits. (Electronic Supplemental Material Table A2). 
These 80 species comprised 95 % of the basal area in the 
whole plot, and between 46 and 100 % of the basal area 
in individual quadrats. To minimize the potential effect of 
missing trait values, we further excluded any quadrats with 
less than 80 % of relative basal area represented by the 80 
species for which we had trait data, leaving 606 out of 625 
quadrats for the statistical analyses. We calculated FDis for 
each trait individually, as the mean distance of each spe-
cies in trait space to the centroid of all species using the 
dbFD function of FD package in R (Laliberté and Legendre 
2010), with tree species weighted by their respective rela-
tive basal area. FDis is statistically independent of species 
richness (Laliberté and Legendre 2010). Here, we focus on 
individual trait analyses, because ecological processes may 
be masked by multivariate trait indices that integrate traits 
with potentially opposing influences on our response vari-
ables (Spasojevic and Suding 2012). Community-weighted 
means (CWM) of each trait for each quadrat were calcu-
lated based on basal-area-weighted averages to represent 
functional identity (FI) of the selected 80 species.

Aboveground biomass and coarse woody productivity

Aboveground biomass for each individual stem was esti-
mated from DBH (cm), tree height (m), and wood density 
(ρ) using a generalized (mixed species) allometric equation 
developed for tropical moist forests (Chave et al. 2005):

Tree height of each individual stem was estimated by a 
locally derived DBH-height allometric equation (McEwan 
et al. 2011a), and wood density was assigned based on spe-
cies identity. AGBstem estimated by this equation had previ-
ously been locally validated with 96 felled trees (McEwan 
et al. 2011a).

AGB for each 20 m × 20 m quadrat (hereafter AGB; 
Mg ha−1) was calculated by summing AGB of all stems in 
each quadrat. AGB of the second census (2008–2009) was 
used for statistical analyses. Based on the two censuses, 
coarse woody productivity (CWP; Mg ha−1 year−1) for 
each quadrat was calculated as the sum of AGB increments 
of surviving stems and AGB of new stems, divided by the 
duration of the census interval. Stems with AGB decre-
ments were assumed to have zero CWP, because CWP for 
individual tree cannot, by definition, be negative.

Statistical analysis

We estimated spatial autocorrelation in CWP and AGB by 
semivariances (Cressie 1993). Monte Carlo simulations based 
upon spatial randomness were applied to construct 95 % con-
fidence intervals of semivariances (Diggle and Ribeiro 2007). 
Spatial autocorrelation only affects tests of correlation between 
response and explanatory variables when both variables are 
spatially autocorrelated (Legendre et al. 2002). Having found 
no spatial autocorrelation in the response variables, we then 
analyzed the univariate relationships among EF variables 
(CWP and AGB), FDis, CWM trait values, stem density, and 
soil factors (the first three principal components of soil vari-
ables) to screen our data (i.e., test for non-linear relationships 
among our variables) and to aid in the interpretation of our 
results. We tested for both linear and quadratic relationships for 
each response measure and selected the best fit using Akaike 
Information Criteria (Burnham and Anderson 2004). Prior to 
analysis, CWP and AGB were log transformed to approach lin-
ear relationships with potentially related independent variables. 
We then used path analysis to investigate links among FDis, 
CWM trait values, soil variables, stem density, and each meas-
ure of EF. We built an initial model (Fig. 1) that included the 
direct effects of soils, stem density, NC and MR on EF and the 
indirect effect of soils via their influence on stem density, NC, 
and MR, as well as the indirect effects of NC and MR via their 
influence on stem density. In our model, we only considered 
the bottom–up effect of soil resources on FDis, CWM trait val-
ues, and stem density. We acknowledge that these properties of 
the tree community likely also influence soil resource availabil-
ity, but such an analysis is beyond the scope of this study and 
would require more dynamic measurements of soil resource 
availability, which we presently do not have. Moreover, here, 

(1)AGBstem = exp
(

−2.977+ ln
(

ρ × DBH2
× H

))

.
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we focus on the influence of FDis on stem density—as opposed 
to the influence of stem density on FDis—as we are interested 
in testing a specific hypothesis about the role of niche comple-
mentarity (we use FDis as a proxy for niche complementarity) 
on stem density and ecosystem function.

For each model, we first assessed model fit with Chi-
square (χ2) tests, root mean square error of approximation 
(RMSEA), and goodness-of-fit index (GFI). χ2 values asso-
ciated with a P value >0.05 (suggesting that observed and 
expected covariance matrices are not different), RMSEA 
<0.05, and GFI >0.95 indicate a good model fit (Kline 
2010). We then used the “modindices” function to find paths 
whose removal from the model would result in the biggest 
improvement in the overall Chi-square value until we found 
the model with the lowest Akaike information criterion 
(AIC) score that had a good model fit. Path analysis was 
conducted using the Lavaan package (Rosseel 2012) imple-
mented in R (R Core Team 2014). In our results (Figs. 1, 2), 
non-significant pathways (arrows) have been removed (as 
compared to the initial model). It is important to note that 
when interpreting a path analysis, consistency between our 
statistical model and data does not mean that our interpreta-
tions are correct, only that the data are consistent with our 
interpretations (McCune and Grace 2002).

Results

Spatial distribution of CWP and AGB

Coarse woody productivity (CWP) ranged from 
0.62 to 13.94 Mg ha−1year−1 among 625 quadrats 

(Electronic Supplemental Material Fig. A2) with a median 
of 3.54 Mg ha−1year−1. Aboveground biomass (AGB) 
ranged from 19.7 to 672.8 Mg ha−1 across quadrats with a 
median of 168 Mg ha−1. Low AGB tended to be found on 
a topographic peak in the southwest quadrant of the plot 
(Electronic Supplemental Material Fig. A2). No statisti-
cally significant spatial autocorrelation was detected for 
CWP or AGB.

Relative importance of soils, stem density, functional 
dispersion, and CWM trait values on ecosystem 
functioning

AGB and CWP showed varied linear relationships with 
the three soil variables, stem density, and FDis and CWM 
trait values for each trait (Electronic Supplemental Material 
Table A3).

Aboveground biomass

All eight models were found to have a close fit to the data 
(Table 1), but varied in the amount of variance in above-
ground biomass explained (r2 between 0.14 and 0.51). 
For all eight plant functional traits, FDis was negatively 
related to AGB and there was a significant effect of CWM 
trait values. Stem density exhibited a direct influence on 
AGB in all eight models (Fig. 2). However, for all traits 
except CABA and Hmax, we found an indirect effect of 
NC on AGB via stem density. There were direct effects of 
the three soil factors on AGB in a few instances (Fig. 2). 
In our model with LA, we found that all three PC axes 
directly influenced AGB; in our model for LDMC, PC2 
(pH) directly influenced AGB; for CABA PC3 (P, N, Na) 
directly influenced AGB; for LeafP both PC2 (pH) and 
PC3 (P, N, Na) directly influenced AGB. For all other 
traits, the effect of soils of AGB was mediated by a com-
bination of stem density, CWM traits, and FDis, suggest-
ing that the soil variables in these models largely influence 
AGB indirectly through their influence of plant functional 
traits or stem density. 

The amount of variation in AGB explained by the eight 
traits varied (Fig. 2). While the general structure of all eight 
models was relatively similar, the models with Hmax and 
LA were the only models, where the total effect of CWM 
trait values contributed more to AGB than either FDis or 
stem density (Table 2). However, the model with Hmax 
explained 51 % of the variation in AGB, while the model 
with LA only explained 16 %. The models for LeafP and 
WD explained little of the variation in AGB (19 and 14 %, 
respectively) and CWM trait contributed less to AGB than 
FDis or stem density, suggesting that these traits may not 
be as informative for assessing B–EF relationships for AGB 
in this forest. The models with LMA, LDMC, and CABA 

Fig. 1  General form of the path analysis used to evaluate how soil 
fertility (PC1-3: the first three axes from a principle components 
analysis), stem density, community-weighted mean (CWM) trait val-
ues, and functional dispersion (FDis) of tree communities is related to 
ecosystem function
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all explained moderate amounts of the variation in AGB 
(26, 21, and 27 %, respectively), but for all of these traits, 
stem density contributed more to AGB than CWM traits as 

well. The model for LeafN explained 34 % of the variation 
in AGB and stem density and CWM trait values contributed 
equally to AGB.

Table 1  Goodness-of-fit 
measures—Chi-square (χ2) 
tests, root mean square error of 
approximation (RMSEA), and 
goodness of fit index (GFI)—
for each of the 16 path analyses, 
testing how tree community 
functional diversity is related to 
ecosystem functions

χ2 values associated with a P value >0.05 (suggesting that observed and expected covariance matri-
ces are not different), a RMSEA <0.05, and a GFI >0.95 indicate a good model fit (Kline 2010). Traits 
include leaf area (LA; cm2 and log transformed), leaf mass per area (LMA; g m−2), leaf dry matter content 
(LDMC, % fresh mass), residuals of the linear function between crown area and basal area of individual 
stems (CABA), leaf nitrogen content (LeafN; % dry mass), leaf phosphorus content (LeafP; % dry mass), 
wood density (WD; g cm−3), and maximum height (Hmax; meter). Ecosystem functions (EF) include above-
ground biomass (AGB, Mg ha−1) and coarse woody productivity (CWP, Mg ha−1 year−1)

EF Trait χ2 df P value RMSEA GFI R2

AGB LA 0.108 1 0.743 0.000 0.999 0.16

LMA 1.324 1 0.250 0.023 0.999 0.26

LDMC 0.966 2 0.617 0.000 1.000 0.21

CABA 1.584 2 0.453 0.000 0.999 0.27

LeafN 0.059 1 0.809 0.000 1.000 0.37

LeafP 1.329 4 0.249 0.023 0.999 0.19

WD 1.833 1 0.176 0.037 0.999 0.14

Hmax 1.149 3 0.765 0.000 0.999 0.51

CWP LA 0.108 1 0.743 0.000 0.999 0.19

LMA 1.324 1 0.250 0.023 0.999 0.18

LDMC 0.966 2 0.617 0.000 1.000 0.19

CABA 0.151 1 0.698 0.000 1.000 0.19

LeafN 0.059 1 0.809 0.000 1.000 0.20

LeafP 1.723 2 0.423 0.000 0.999 0.18

WD 1.833 1 0.176 0.037 0.999 0.21

Hmax 1.149 3 0.765 0.000 0.999 0.25

Fig. 2  Path analysis testing the relative importance of niche comple-
mentarity, mass ratio, and stem density on aboveground biomass—
including individual models for a leaf area (LA), b leaf mass per area 
(LMA), c leaf dry matter content (LDMC), d residuals of the lin-
ear function between crown area and basal area of individual stems 
(CABA), e leaf nitrogen content (LeafN), f leaf phosphorus content 

(LeafP), g wood density (WD), and h maximum height (Hmax). CWM 
community-weighted mean trait values. PC1-3 = soil fertility based 
on the first three axes of a principle components analysis of ten soil 
variables. Path coefficients are standardized prediction coefficients 
(Grace and Bollen 2005). Pathways not found to be influential (non-
significant P > 0.05) are removed
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Coarse woody productivity

All eight models were found to have a close fit to the data 
(Table 1), but varied in the amount of variance in CWP 
explained (r-squared between 0.18 and 0.25). FDis was nega-
tively related to CWP for four of the eight traits (LDMC, 
leafP, WD, and Hmax), while for Hmax, both FDis and CWM 
trait values significantly influenced CWP (Fig. 3). LeafN was 
the other trait for which CWM trait values influenced CWP. 
Together, these patterns suggest that neither NC nor MR con-
tribute strongly to CWP in this forest. On the other hand, in 
all eight models, we found a direct influence of stem density 

on CWP (Fig. 3). For all traits except CABA and Hmax, there 
was an indirect effect of FDis on CWP via stem density. For 
LDMC, CABA, leafP, and Hmax, there was an indirect effect 
of CWM trait values on CWP via stem density.

In all eight models PC1 (available K, electrical con-
ductivity, organic carbon, Ca, and Mg) directly influenced 
CWP, while PC2 (pH) and PC3 (P, N, Na) had no direct 
effect (Fig. 3). However, PC2 and PC3 did indirectly effect 
CWP by influencing stem density, CWM trait values, and 
FDis, suggesting that pH, P, N, and Na may only influence 
CWP indirectly through their influence on plant functional 
traits or stem density.

Table 2  Direct, indirect and total standardized effects (based on path analysis) of the six predictor variables on aboveground biomass

Effects (pathway coefficients) describe the relative strength of the relationship between a given predictor variable and ecosystem function. Posi-
tive values indicate a positive relationship, while negative values indicate a negative relationship

See Table 1 for trait abbreviations

FDis functional dispersion, CWM community-weighted mean trait values, PC1-3 soil fertility based on the first three axes of a principle compo-
nents analysis of ten soil variables, NS non-significant relationships

Predictor Pathway to aboveground biomass Effect (pathway coefficient)

LA LMA LDMC CABA LeafN LeafP WD Hmax

FDis Direct −0.25 −0.25 −0.36 −0.48 −0.36 −0.47 −0.31 −0.29

Indirect through stem density 0.08 0.11 0.03 NS 0.04 0.03 0.04 NS

Total effect −0.17 −0.14 −0.33 −0.48 −0.32 −0.44 −0.27 −0.29

CWM traits Direct −0.14 0.27 0.11 −0.17 0.34 0.16 0.19 0.64

Indirect through stem density −0.11 NS 0.02 −0.06 NS −0.04 NS −0.08

Total effect −0.25 0.27 0.13 −0.23 0.34 0.12 0.19 0.56

Stem density Direct 0.20 0.41 0.27 0.18 0.34 0.26 0.29 0.43

PC1 Direct −0.10 NS NS NS NS NS NS NS

Indirect through FDis 0.05 NS NS NS NS 0.05 NS NS

Indirect through CWM traits 0.02 −0.03 0.02 0.02 −0.05 −0.05 NS NS

Indirect through stem density −0.02 NS −0.02 NS −0.03 −0.02 −0.02 −0.03

Indirect through FDis and stem density −0.02 NS NS NS NS −0.003 NS NS

Indirect through CWM traits and stem 
density

0.02 NS −0.002 −0.01 NS 0.01 NS NS

Total effect −0.05 −0.03 0.002 0.01 −0.07 −0.02 −0.02 −0.03

PC2 Direct −0.12 NS −0.11 NS NS −0.07 NS NS

Indirect through FDis NS −0.07 NS −0.04 −0.07 0.05 −0.06 −0.05

Indirect through CWM trait value 0.03 0.05 NS 0.05 −0.05 0.03 0.03 −0.18

Indirect through stem density 0.05 0.16 0.13 0.07 0.15 0.05 0.13 0.18

Indirect through FDis and stem density NS 0.03 NS NS 0.01 −0.003 0.01 NS

Indirect through CWM traits and stem 
density

0.02 NS NS 0.02 NS 0.02 NS 0.02

Total effect −0.03 0.17 0.02 0.09 0.04 0.07 0.11 −0.02

PC3 Direct −0.13 NS NS −0.08 NS −0.15 NS NS

Indirect through FDis 0.05 −0.05 −0.04 NS −0.06 0.07 NS NS

Indirect through CWM trait value 0.04 NS NS 0.05 −0.06 −0.03 NS −0.07

Indirect through stem density 0.07 0.11 0.09 0.04 0.11 0.08 0.09 0.13

Indirect through FDis and stem density −0.01 0.02 0.003 NS 0.01 −0.004 NS NS

Indirect through CWM traits and stem 
density

0.03 NS NS 0.02 NS 0.01 NS 0.01



836 Oecologia (2016) 182:829–840

1 3

The amount of variation in CWP explained by the eight 
traits varied (Fig. 3), with Hmax explaining the most (25 %) 
and LMA and LeafP explaining the least (18 %). These 
models were more variable than AGB, with some having 
no direct effects of CWM trait values or FDis on CWP: 
LA, LMA, and CABA. In no model, did the total effect of 
CWM trait values or FDis contribute more to CWP than 
stem density (Table 3), suggesting that these traits may not 
be particularly informative for assessing B–EF relation-
ships for CWP in this forest.

Discussion

Multiple mechanisms have been shown to operate simul-
taneously and affect community dynamics and ecosystem 
function (Mokany et al. 2008; McEwan et al. 2011b; Grace 
et al. 2016). Data from our subtropical forest study system 
indicate, specifically, that in our subtropical forest study 
area, B–EF relationships are due to simultaneous influ-
ences of niche complementarity (NC) and mass-ratio (MR) 
effects. Functional identity (CWM trait values) was closely 
linked to EF, while functional dispersion (FDis) was nega-
tively associated with EF suggesting that the dominance of 
species with particular functional traits led to increasing EF 
which is indicative of MR effects (Grime 1998). We also 
found that NC indirectly influenced EF via its influence on 
stem density; FDis had a positive effect on EF by increas-
ing stem density, suggesting that NC still contributes 
to EF in these forests. Moreover, we also found that MR 

indirectly influenced EF via its influence on stem density 
for CABA and Hmax, suggesting that MR effects operate 
through both direct and indirect mechanisms. Together, our 
results support the idea that the MR and NC hypotheses are 
not mutually exclusive (Mokany et al. 2008) and highlight 
the importance of examining the direct and indirect effects 
of these processes when seeking to understand EF.

Our results are inconsistent with NC as the primary 
driver of EF and refute H1 that functional diversity meas-
ures would be positively related to EF in this diverse sub-
tropical forest. Specifically, we found a negative direct 
relationship between functional dispersion (FDis) and AGB 
for all eight traits and either a negative (LDMC, LeafP, 
WD, and Hmax) or no relationship (LA, LMA, CABA, and 
LeafN) with CWP. The concept of NC as a driver of EF is 
heuristically compelling, ecologically reasonable, and sup-
ported by simulation models, experiments, and some obser-
vational studies (e.g., Tilman 1999; Cardinale et al. 2007; 
Fargione et al. 2007; Morin et al. 2011). For instance, 
Barrufol et al. (2013) found that tree species richness was 
positively related to biomass accumulation during tropical 
forest succession. Tree size inequality, which is related to 
tree species diversity, has been linked with increased bio-
mass in boreal forests (Zhang and Chen 2015). Even so, 
it is far from clear that the NC-EF paradigm holds for all 
ecosystems and varying results have been found in forests 
(Reiss et al. 2009; Paquette and Messier 2011; Ruiz-Jaen 
and Potvin 2011). While the previous work at our site sug-
gested a positive relationship between tree species richness 
and EF (McEwan et al. 2011a), taxonomic measures, such 

Fig. 3  Path analysis testing the relative importance of niche comple-
mentarity, mass ratio, and stem density on coarse woody productiv-
ity—including individual models for a leaf area (LA), b leaf mass 
per area (LMA), c leaf dry matter content (LDMC), d residuals of the 
linear function between crown area and basal area of individual stems 
(CABA), e leaf nitrogen content (leafN), f leaf phosphorus content 

(LeafP), g wood density (WD), and h maximum height (Hmax). CWM 
community-weighted mean trait values. PC1-3 = soil fertility based 
on the first three axes of a principle components analysis of ten soil 
variables. Path coefficients are standardized prediction coefficients 
(Grace and Bollen 2005). Pathways not found to be influential (non-
significant P > 0.05) are removed



837Oecologia (2016) 182:829–840 

1 3

as species richness, do not account for the fact that some 
species may be functionally redundant (Loreau 2004). Our 
results reinforce the importance of considering functional, 
as well as taxonomic diversity when analysing B–EF rela-
tionships (Díaz and Cabido 2001).

The MR hypothesis predicts that ecosystem proper-
ties should be largely determined by the characteristics of 
the dominant species within a community (Grime 1998) 
and we expected to see strong relationships between 
functional identity (CWM trait values) and EF if the MR 

hypothesis was supported. We found that CWM trait val-
ues for all eight traits were directly related to AGB and 
that CWM trait values for leafN and Hmax were directly 
related to CWP. Similar findings were reported by Hooper 
and Vitousek (1997) who noted that the identity of particu-
lar functional groups present, not functional diversity per 
se, was the best predictor of aboveground biomass in ser-
pentine grasslands. Moreover, Finegan et al. (2015) found 
a strong MR effect on aboveground biomass storage and 
increment in Bolivian, Costa Rican, and Brazilian tropical 

Table 3  Direct, indirect, and total standardized effects (based on path analysis) of the six predictor variables on coarse wood productivity

Effects (pathway coefficients) describe the relative strength of the relationship between a given predictor variable and ecosystem function. Posi-
tive values indicate a positive relationship, while negative values indicate a negative relationship

See Table 1 for trait abbreviations

FDis functional dispersion, CWM community-weighted mean trait values, PC1-3 soil fertility based on the first three axes of a principle compo-
nents analysis of ten soil variables, NS non-significant relationships

Predictor Pathway to coarse woody production Effect (pathway coefficient)

LA LMA LDMC CABA LeafN LeafP WD Hmax

FDis Direct NS NS −0.12 NS NS −0.11 −0.16 −0.17

Indirect through stem density 0.17 0.13 0.05 NS 0.06 0.04 0.18 NS

Total effect 0.17 0.13 −0.07 0.00 0.06 −0.07 0.02 −0.17

CWM traits Direct NS NS NS NS 0.11 NS NS 0.21

Indirect through stem density 0.22 NS 0.04 −0.13 NS −0.06 NS −0.09

Total effect 0.22 0.00 0.04 −0.13 0.11 −0.06 0.00 0.12

Stem density Direct 0.42 0.44 0.43 0.39 0.44 0.42 0.46 0.49

PC1 Direct 0.10 0.11 0.11 0.11 0.13 0.12 0.11 0.13

Indirect through FDis NS NS NS NS NS −0.01 NS NS

Indirect through CWM traits NS NS NS NS −0.02 NS NS NS

Indirect through stem density −0.03 NS NS NS −0.04 −0.04 −0.03 −0.04

Indirect through FDis and stem density −0.03 NS NS NS NS −0.004 NS NS

Indirect through CWM traits and stem 
density

0.03 NS −0.003 −0.01 NS 0.01 NS NS

Total effect 0.07 0.11 0.11 0.10 0.08 0.08 0.08 0.09

PC2 Direct NS NS NS NS NS NS NS NS

Indirect through FDis NS NS NS NS NS −0.01 −0.03 −0.03

Indirect through CWM trait value NS NS NS NS −0.02 NS NS −0.59

Indirect through stem density 0.10 0.18 0.20 0.15 0.20 0.20 0.21 0.21

Indirect through FDis and Stem density NS 0.04 NS NS 0.01 −0.004 0.03 NS

Indirect through CWM traits and stem 
density

0.04 NS NS 0.04 NS 0.006 NS 0.03

Total effect 0.14 0.21 0.20 0.19 0.19 0.19 0.21 −0.38

PC3 Direct NS NS NS NS NS NS NS NS

Indirect through FDis NS NS −0.01 NS NS −0.01 NS NS

Indirect through CWM trait value NS NS NS NS −0.02 NS NS −0.02

Indirect through stem density 0.16 0.12 0.14 0.09 0.14 0.13 0.15 0.15

Indirect through FDis and stem density −0.03 0.02 0.006 NS 0.01 −0.004 NS NS

Indirect through CWM traits and stem 
density

0.07 NS NS 0.04 NS 0.006 NS 0.01

Total effect 0.20 0.15 0.13 0.13 0.126 0.13 0.15 0.14
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forests. If individual traits are strongly related to a particu-
lar capacity or function of interest, increasing functional 
diversity could dilute the efficacy of the local plant com-
munity in performing that function.

We found evidence that variation in stem density serves 
as a mechanism by which both NC and MR hypotheses can 
operate simultaneously and indirectly in a forest to influ-
ence EF. Forest communities with higher stem density 
are generally associated with higher diversity and greater 
biomass (Chisholm et al. 2013). Supporting this idea, we 
found a strong positive relationship between stem density 
and both CWP and AGB in all our models. These analyses 
also revealed consistent evidence of a positive relationship 
between FDis and stem density. Specifically, these mod-
els suggest that increasing FDis in key traits is associated 
with increased stem density and an increase in both AGB 
and CWP. The relationship between diversity and stem 
density may be linked with “canopy packing” which opti-
mizes space utilization and, in our example, may lead to 
increased local biomass. Zhang and Chen (2015) demon-
strated that diversity is linked with increased biomass due 
to increasing tree size inequality in a boreal forest. Simi-
larly, Jucker et al. (2015) found that canopy packing was 
strongly associated with species richness in European per-
manent forest plots. Our results suggest that canopy pack-
ing may influence both AGB and CWP and that both NC 
and MR effects may contribute to EF indirectly by influ-
encing canopy packing. Interestingly, we found a positive 
relationship between FDis and stem density suggesting that 
NC was an important driver of stem density. There were 
only two traits (CABA and Hmax), where we found support 
for MR influencing stem density (a negative or no rela-
tionship between FDis and stem density and a significant 
relationship between CWM trait values and stem density). 
While these patterns suggest that the MR effect may also 
indirectly influence EF by affecting stem density, taken as a 
whole our results suggest that NC may be a strong indirect 
driver of EF, while MR primarily influences EF directly.

The eight functional traits in our analysis differed in 
their influence on EF. In particular, Hmax had the strongest 
influence on EF (largest path coefficients) and the models 
with Hmax explained the most variation in AGB (r2 = 0.51) 
and CWP (r2 = 0.26) as compared to the other traits. Simi-
larly, Conti and Díaz (2013) found that plots with low vari-
ation in tree height were associated with higher carbon stor-
age, while increasing variation in tree height was associated 
with lower EF. For the other functional traits, we found that 
LA, LeafP, WD, and LDMC were relatively weak predic-
tors of AGB (model r2 = 0.16, 0.19, 0.14, and 0.21, respec-
tively), while LMA, CABA, and LeafN performed better 
(model r2 = 0.26, 0.27, and 0.37, respectively). In contrast, 
none of the eight traits were particularly strong predictors 
of CWP.

In summary, our results provide a novel perspective on the 
B–EF relationship in tropical forests on the island nation of 
Taiwan in which both MR and NC are linked to forest bio-
mass and productivity. Functional diversity was negatively 
associated with EF, as would be expected if greater diversity 
was associated with a higher frequency of inferior trait val-
ues. However, we found an indirect, positive link between 
FDis and stem density suggesting that complementarity could 
be an indirect driver of EF in these forests. Functional identity 
(CWM trait values) was closely linked to EF in some models, 
and was particularly strong for maximum tree height. This 
results suggests that, in landscape positions, where trees are 
protected from disturbances (such as wind; McEwan et al. 
2011a), the dominance of species with traits associated with 
greater tree height is associated with increased EF. Interest-
ingly, we also found significant links between CWM trait val-
ues and stem density. These results suggest that MR effects 
operate through multiple mechanisms, and further, that stem 
density is a mechanism through which MR and NC may 
simultaneously influence EF. Future work that address B–EF 
in high-diversity systems, where stem density varies widely, 
offers promise for elucidating the mechanisms linking vari-
ous forms of biological diversity to ecosystem function.
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