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While it is well established that microbial composition and diversity shift along
environmental gradients, how interactions among microbes change is poorly
understood. Here, we tested how community structure and species interactions among
diverse groups of soil microbes (bacteria, fungi, non-fungal eukaryotes) change across a
fundamental ecological gradient, succession. Our study system is a high-elevation alpine
ecosystem that exhibits variability in successional stage due to topography and harsh
environmental conditions. We used hierarchical Bayesian joint distribution modeling to
remove the influence of environmental covariates on species distributions and generated
interaction networks using the residual species-to-species variance-covariance matrix.
We hypothesized that as ecological succession proceeds, diversity will increase, species
composition will change, and soil microbial networks will become more complex.
As expected, we found that diversity of most taxonomic groups increased over
succession, and species composition changed considerably. Interestingly, and contrary
to our hypothesis, interaction networks became less complex over succession (fewer
interactions per taxon). Interactions between photosynthetic microbes and any other
organism became less frequent over the gradient, whereas interactions between plants
or soil microfauna and any other organism were more abundant in late succession.
Results demonstrate that patterns in diversity and composition do not necessarily relate
to patterns in network complexity and suggest that network analyses provide new
insight into the ecology of highly diverse, microscopic communities.

Keywords: bacteria, diversity, fungi, interaction network, joint distribution model, 16S, 18S, ITS

INTRODUCTION

Microbes are important regulators of ecosystem function, and much research has been directed at
testing how soil microbial composition and diversity shift along environmental gradients. Work,
thus far, has identified many important abiotic and biotic drivers that structure the composition
and diversity of microorganisms in the soil, including pH, salinity, climate, soil nutrients, plant
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diversity, and plant functional traits (Fierer and Jackson,
2006; Lozupone and Knight, 2007; Nemergut et al., 2010; de
Vries et al., 2012; Porazinska et al., 2018). However, how
interactions among microbial taxa change across the landscape
is much less well understood (Nemergut et al., 2013). Previous
studies have used microbial co-occurrence patterns to construct
networks and make inferences about microbial interactions
(Barberán et al., 2012; Widder et al., 2014; Williams et al.,
2014; Morriën et al., 2017; de Vries et al., 2018); however,
these methods are limited because microbial co-occurrence can
reflect both species interactions (e.g., predation, facilitation,
decomposition) and shared environmental niches (co-occurrence
due to shared preference for abiotic conditions). Recent advances
in hierarchical joint species distribution modeling allow us to
parse out the effect of environmental variables to better capture
interactions per se (Hui and Poisot, 2016; Ovaskainen et al.,
2017); yet they have rarely been applied to microbial datasets
(Collins et al., 2018). Here we used this technique to test whether
patterns in the complexity of bacterial and eukaryotic networks
follow patterns in diversity and compositional change across a
fundamental gradient, ecological succession.

While the vast majority of research on community patterns
along successional gradients has focused on macroorganisms,
shifts in microbial communities are beginning to be addressed.
Recent work suggests that the composition of microbes
changes considerably and predictably during primary succession
(Nemergut et al., 2007; Tarlera et al., 2008; Roy-Bolduc et al.,
2015; Poosakkannu et al., 2017), with certain groups like
Actinobacteria and N fixers prevalent in early successional
stages, and other groups such as Acidobacteria and mycorrhizal
taxa dominating later stages (Rime et al., 2015; Poosakkannu
et al., 2017; Yarwood and Högberg, 2017). Much work also
suggests that the taxonomic diversity (Nemergut et al., 2007;
Tarlera et al., 2008; Brown and Jumpponen, 2014; Rime
et al., 2015; Poosakkannu et al., 2017) and functional diversity
(Tscherko et al., 2003) of soil bacterial and fungal communities
generally increase during succession. However, some studies find
decreases, no change, or variable patterns for some or all taxa
(Sigler and Zeyer, 2002; Brown and Jumpponen, 2014; Dini-
Andreote et al., 2014; Poosakkannu et al., 2017).

While patterns in diversity and composition of microbial
communities during succession are beginning to emerge,
virtually nothing is known about how microbial networks
shift across that same gradient. The network structure of
communities, independent of diversity and composition, has
important implications for resilience (Welti and Joern, 2015;
Mandakovic et al., 2018), stability (Neutel et al., 2007), and
the efficiency of carbon transfer in an ecosystem (D’Alelio
et al., 2016; Morriën et al., 2017). Studies of macroorganisms
generally find that interaction networks increase in complexity
across succession. In pollination biology (Albrecht et al., 2010;
Losapio et al., 2015) and work on animal food webs (Wardle
et al., 1995; Neutel et al., 2007), network complexity (typically
measured as the number of connections per species) increases
due to the increase in quantity and diversity of resources
over succession. Experiments have also shown that substrate
limitation can constrain the complexity of animal food webs

(Chen and Wise, 1999). This same reasoning should hold true for
microbial food webs and interaction networks over succession
(Bardgett et al., 2005), but it has rarely been studied (but see
Dini-Andreote et al., 2014). The diversity of carbon substrates
increases over succession (Hooper et al., 2000; Nemergut et al.,
2007; Milcu and Manning, 2011). More carbon substrates mean
a higher diversity of microorganisms to degrade those substrates
and more mutualistic or predatory relationships among taxa can
arise (Boer et al., 2005). Furthermore, microbial communities
often act in consortia to synergistically degrade complex plant-
derived compounds, with some microbes utilizing metabolites or
taking advantage of breakdown products of extracellular enzymes
produced by other taxa (Lynd et al., 2002; Alessi et al., 2017).
Thus, due to the increases in carbon quantity and diversity over
succession, we expected the complexity of microbial interactions
to increase as well.

Here we combined classical community measures of diversity
and species composition with measures of putative species
interaction networks using hierarchical Bayesian joint species
distribution modeling to ask how microbial community structure
changes across a high elevation successional gradient. Our system
is a high-elevation alpine landscape in which local variation
in environmental conditions (e.g., topography, snow depth)
results in strong differences in successional stage across space,
as measured by differences in a suite of ecological variables
including plant cover, plant diversity, soil nutrients, organic
matter content, and microbial biomass. We investigated bacterial
and eukaryotic communities, including single-celled eukaryotes,
fungi, and soil microfauna, as well as plant communities, to
capture multitrophic interactions among core soil organisms.
Incorporating multiple taxonomic groups is notable as most
soil microbial network research has been limited to a single
domain of life, primarily bacteria, and thus has not captured
higher-order predation and grazing food webs (but see Steele
et al., 2011; Morriën et al., 2017). We hypothesized that
over the successional gradient, diversity will increase, species
composition will change, and soil microbial networks will
become more complex.

MATERIALS AND METHODS

Study Site
Our study site is a south-facing subnival slope in Green
Lakes Valley Watershed at Niwot Ridge LTER (40◦3′24′′N
105◦37′30′′W, Supplementary Figure S1). It is approximately
2 km2 in area, ranging between 3610 and 3940 m in elevation,
and is composed of talus block slopes, late-melting snowbanks
covering unvegetated gravel soils, fellfields, and patches of
tundra vegetation. Plant cover ranges from 0% in late-melting
snowbanks up to ∼75% (170 individuals m−2) in exposed areas.
The site is covered with snow from October to June and the
deepest snowfields do not melt fully until August or September.
This site was previously sampled in 2007 (King et al., 2010, 2012);
we report here on a sampling done in 2015.

Sampling locations were based on a grid in which most
plots were ∼50 m apart, and in three targeted sampling areas
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where plots were 5 m apart (King et al., 2010) (Supplementary
Figure S1). We sampled 98 plots that were circular with
1 m radius. Soil samples, for microbial community analysis
and biogeochemistry, were collected September 8–17, 2015, 1–
2 weeks after the main snowbeds melted out. Three subsamples
of soil (∼3 cm diameter, 4 cm depth) were taken from each
plot and combined. Samples were homogenized in a ziplock
bag, and subsamples for sequencing and microfauna extraction
were weighed out the same day and stored at −20 and
4◦C, respectively, until processing. Samples were then stored
overnight at 4◦C, and subsampled for gravimetric soil moisture,
water holding capacity (WHC), inorganic N, and total C (TC) and
N (TN), microbial C and N, and pH.

Vegetation was surveyed during peak biomass, August 19–
September 3, 2015. Plant density was measured by counting
all plants within the 3.14 m2 circle and ranged from 0 to
169 plants/m2. Clonal plants and cushion plants were counted
as clumps, such that counts represent our best estimate of
single genets. Moss was also counted as clumps. Lichen was
not included in the plant dataset, because the fungi and
algae/cyanobacteria that compose it are measured in the microbe
datasets. Plant cover was measured using the point intercept
method, assessing the presence of vegetation, rock, and bare soil
at 40 points within the plot.

Laboratory Molecular Methods
We chose metabarcoding gene markers specific to each microbial
group of interest: 16S for bacteria, ITS for fungi, and 18S
for eukaryotes. For eukaryotes, we designated two groups: (1)
small, often single-celled, eukaryotes (protists and algae), and
(2) soil “microfauna” (small invertebrates including nematodes,
tardigrades, rotifers, platyhelminthes, small arthropods, and
small annelids). All groups except the microfauna were
extracted directly from 0.35 g soil. Because this volume is
too small to accurately capture abundance of microfauna,
they were first extracted from ∼20 g soil subsamples using
Whitehead trays (Porazinska et al., 2014). Briefly, each tray
(20 cm × 20 cm × 5 cm) was equipped with a supporting
sieve lined with a thin tissue. Soil was spread evenly over
the tissue, wetted with 150 ml of water, and left to extract
at room temperature for 24 h. Water from each tray was
passed through a 38 µm mesh sieve, captured microfauna were
transferred to 15 ml sterile Falcon tubes, and allowed to settle
overnight at 4◦C. The volume was reduced to ∼0.5 ml with
sterile disposable pipettes and transferred to bead beating tubes
from the PowerSoil DNA isolation kit (MOBIO Laboratories Inc.,
Carlsbad, CA, United States).

All DNA was extracted using a PowerSoil DNA Isolation Kit
according to the manufacture’s protocol. Each sample was PCR
amplified twice using primers (515F/806R, ITS1-F/ITS2, and
1391f/EukBr), multiplexing barcodes (Goley), and conditions
as adapted by the Earth Microbiome Project1 (Amaral-Zettler
et al., 2009; Caporaso et al., 2012). Amplicons were purified and
normalized with SequalPrep Normalization Kits (Invitrogen Inc.,
CA, United States), combined into three single pools of 16S, ITS,

1http://www.earthmicrobiome.org/emp-standard-protocols/

and 18S amplicon libraries, and sequenced on three lanes using
Illumina technology (MiSeq2000, pair-end 2 × 300 bp) at the
BioFrontiers Institute, Boulder, CO, United States.

Sequence Analysis
The raw read sequence data were processed using amplicon
sequence variants (ASV) methods in QIIME2 version 2018.2
(Callahan et al., 2017). We demultiplexed and trimmed primers
and adapters in QIIME2 and denoised the data and joined paired
reads using DADA2. For bacteria and ITS reads that showed poor
quality at the ends, we truncated reads where median quality
score fell below ∼30; however, DADA2 is robust to low-quality
sequence because it incorporates read quality information into
its error model. We assigned taxonomy using a pre-trained Naive
Bayes classifier. The classifier was trained on the Greengenes 13.8
database (DeSantis et al., 2006) for 16S, UNITE 7.2 (Abarenkov
et al., 2010) for ITS, and SILVA-ARB release 111 (Pruesse et al.,
2007) for 18S. 16S and 18S sequences were aligned using mafft,
and trees were built using FastTree within QIIME2.

Biogeochemistry
We measured a number of environmental variables to
characterize the successional stage of each plot and to use
as explanatory variables in the joint distribution models.
Gravimetric soil moisture was measured on 5 g of soil by drying
for 48 h at 60◦C. WHC was determined by placing 4 g soil in
15 ml bottom-meshed conical tubes, saturating the soil and
allowing to drain, weighing the saturated soil, and then drying at
60◦C for 15 h and weighing the dried soil.

Microbial biomass N and C were determined using the
chloroform fumigation method (Robertson et al., 1999). Briefly,
a 5 g subsample of soil was extracted immediately with 0.5 M
K2SO4 and another subsample was fumigated with chloroform to
kill microbes and then extracted. Total dissolved nitrogen (TDN)
and dissolved organic carbon (DOC) were then analyzed using
a Shimadzu total organic carbon analyzer equipped with a TDN
module (Shimadzu Scientific Instruments, Inc., Columbia, MD,
United States), and microbial biomass N and C were calculated as
the difference between the fumigated and unfumigated samples.
Inorganic N (NH4

+, NO3
−) was measured on the unfumigated

extracts with a Lachat QuickChem 8500 Flow Injection Analyzer
(Lachat Instruments, Loveland, CO, United States) and Synergy
2 Multi-Detection Microplate Reader (BioTek Instruments, Inc.,
Vinooski, VT, United States).

Total C and TN were measured on 4 g air-dried soil, ground
manually with mortar and pestle, and analyzed with a Thermo
Finnigan Flash EA 1112 Series CHN analyzer (Thermo Fisher
Scientific, Inc.). To measure pH, 2 g of soil was suspended in
3 ml of ultrapure water (Honeywell) and shaken for 1 h, and
pH was recorded when the reading stabilized using a calibrated
Oakton benchtop pH meter (Oakton Instruments, Vernon Hills,
IL, United States).

Snow depth in each plot was calculated from annual snow
depth surveys conducted in the Green Lakes Valley from 1997
to 2015 (Losleben, 2002; Morse, 2019). Surveys occur in May at
peak snowpack along a grid of random points (mean n = 483)
spaced ∼50 m apart. We used kriging interpolation to create
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a continuous raster surface for each year, conferred snow
depth to each plot, and then averaged over the 19 years to
reflect long-term snow cover conditions. We also calculated
the coefficient of variation (CV) in snow depth for each plot
(standard deviation/mean) to quantify variability in snow depth.
Elevation (m. a. s. l.) was recorded using a handheld Trimble GPS
device with an error rate of 3 m.

Statistical Analysis
Our final data set consisted of the 75 plots that had sufficient
sequencing depth shared across all organism groups and available
data for all biogeochemical analyses. Prior to analyses, all data
sets were rarefied to an even sampling depth (bacteria rarefied
to 7987, fungi to 1023 small eukaryote to 871, microfauna to
700). We recognize that this sampling depth is relatively shallow;
however, our network analysis focuses on abundant species, thus
we believe we are capturing relevant community members (see
Supplementary Figure S2 for rarefactions). Prior to network
construction, microbial taxa were classified as photosynthetic,
heterotrophic, chemoautotrophic, or unknown using a number
of taxonomic references (Maddison and Schulz, 2007; Rosenberg
et al., 2014a,b,c,d,e,f; Horton et al., 2019). All analyses were done
in R (R Core Team, 2017).

We classified plots as early, mid, or late succession by
running a PCA of environmental and plant variables previously
determined to change over successional gradients in alpine areas
(Bekku et al., 2004; Schmidt et al., 2008; Porazinska et al.,
2018) (TC, TN, NH4

3+, NO3
−, microbial biomass C, microbial

biomass N, pH, WHC, soil moisture, snow depth, elevation,
plant density, plant Shannon diversity, and plant cover) using
the vegan package (Oksanen et al., 2016) (see Supplementary
Figure S3 for the PCA and Supplementary Table S1 for pairwise
Pearson correlations). We chose to include all variables in
the PCA because succession is associated with changes in all
variables; however, results are robust to the choice of variables
used to define successional stage. Axis 1 of the PCA explained
50.9% of the variation and was used as a proxy for successional
stage (Axis 2 only explained 14.8% of the variation so was not
used). Plot scores were extracted and divided into three groups
of 25 corresponding to early, mid, and late succession (see
Supplementary Figure S1 for photos of plots). We recognize that
succession in this system is a continual process and splitting the
data into three groups with equal number of plots is not ideal.
However, it was necessary to split groups evenly (25 plots in
each successional stage) so that sample size would not influence
the number of microbial taxa being modeled and the statistical
power to detect significant relationships. We chose to split data
into three groups, because a sample size of n = 25 plots in each
successional stage was reasonable based on the complexity of (df
needed for) the joint distribution modeling described below.

To compare diversity of bacteria, fungi, small eukaryotes,
and microfauna across succession, Faith’s phylogenetic diversity,
ASV richness (Chao1), Pielou’s evenness, rarity, and frequency
were calculated. Phylogenetic diversity was calculated using the
package picante (Kembel et al., 2010) in R for all groups except
fungi, because the fungal ITS sequenced region is highly variable
and difficult to align (Moore and Frazer, 2007). Rarity was

calculated as the proportion of taxa with relative abundances
less than 1/S (Camargo, 1992), where S is the mean ASV
richness. Frequency was calculated as the number of plots (out
of 25) in which each taxon was present in early, mid, and late
successional stages. To test the effect of successional stage on
all diversity metrics except frequency, ANOVAs were performed
using the gls() function in package nlme (Pinheiro et al., 2019)
in R accounting for spatial autocorrelation with a spherical
autocorrelation structure. To test the effect of successional stage
on frequency, a quasi-poisson regression was performed using
the glm() function in R (autocorrelation was not included since
the observational unit is taxon rather than plot, quasipoisson
models were preferred due to slight overdispersion). Differences
among successional stages were tested using Tukey post hoc tests
with glht() from the multcomp package (Hothorn et al., 2008).

Compositional shifts across the successional gradient were
assessed for each taxonomic group using ordination techniques
and visualized using relative abundance barplots and krona plots.
For ordination, because microbiome datasets are compositional
(relative abundance) and thus have a negative correlation bias,
the centered log-ratio (clr) transformation was used (Gloor
et al., 2017). We used cmultRepl() in package zCompositions
to impute zeros (estimate a small non-zero number for the
zeros, because you cannot take the log of zero), and then
calculated clr. Redundancy analysis (RDA) was performed on
the clr transformed data (also known as the Aitchison distance)
(Gloor et al., 2017), and permutation tests were done to test
the effect of successional stage on community composition
using R package vegan (Oksanen et al., 2019). To visualize
compositional shifts over succession at a higher taxonomic level,
we calculated relative abundance of different groups of bacteria
(phylum level), fungi (phylum level), small eukaryotes (phylum
or major clade level, much of the taxonomy is not resolved),
and microfauna (phylum level), separating photosynthetic,
chemoautotrophic, and heterotrophic taxa within the groups.
The effect of successional stage on the most abundant groups
was tested using linear models including spatial autocorrelation
structure (spherical model), and ANOVAs were performed with
P-values adjusted to control the false discovery rate (Benjamini
and Hochberg, 1995). Krona interactive plots were also created
(Ondov et al., 2011) using the psadd package (Pauvert, 2019) in R
and are available in FigShare (Farrer, 2019).

Hierarchical Bayesian joint species distribution modeling was
performed using the package boral (Hui and Poisot, 2016) in
R. We used clr transformed data to reduce negative correlation
bias, and we only included ASVs that occurred in at least 12
plots (out of 25) in each successional stage; thus, we suggest
that this is a “core” microbial network focused on interactions
among frequent taxa. We fit the joint distribution model with
three latent variables and included autocorrelation structure
(spherical model) to account for non-independence due to spatial
arrangement of plots. We use forward selection to select the
four environmental explanatory variables that explained the most
variation in our models (snow depth, pH, soil moisture, and
CV snow depth), with the realization that many environmental
variables were correlated with one another. We used actual
environmental variables (as opposed to Axis 1 of the PCA
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which we used to define successional stage), because we wanted
more dimensionality to our analysis and we wanted our results
to be generalizable to other systems. For early, mid, and late
successional models, there was some correlation among the four
environmental explanatory variables (seven out of 18 pairs were
correlated: two in early, two in mid, and three in late); however,
the absolute values of all correlation coefficients were ≤0.62.
When models were run including only environmental variables
and autocorrelation structure, those four variables explained an
average of 27% of the variance in ASV (clr) abundance, suggesting
that it is important to remove their effect. We fit the model using
MCMC with 40,000 iterations, a burn-in of 10,000, and a thin of
30. Convergence was checked using Geweke diagnostics and trace
plots, and model fit was assessed using Dunn–Smyth residuals
and a normal quantile plot (see Supplementary Figure S4).
We calculated the residual species-to-species correlation matrix,
which represents species correlations after accounting for the
effects of the environmental variables. We interpret these
correlations as representing species interactions; however, they
may also represent unmeasured environmental gradients, which
is discussed further in the discussion.

We built networks based on correlations whose 95% posterior
credible interval did not overlap zero. Networks were visualized
using the package igraph (Csardi and Nepusz, 2006). We
calculated linkage density as our metric of complexity (average
number of edges per node), and we tabulated number of nodes
(ASVs), number of edges (connections between the nodes),
number of positive and negative correlations, and the number of
bacteria, fungi, small eukaryotes, and soil microfauna included in
each network. All code can be found on GitHub: https://github.
com/ecfarrer/NWT_MovingUphill5.

Randomizations and Network
Assessment
Prior studies have shown that species richness can affect the
number of network connections (Faust et al., 2015), and our
data show that microbial richness increases across succession.
We performed four tests to ensure that the observed patterns of
network complexity over the successional gradient were real and
not due to statistical artifacts.

First, we assessed our false-positive rate in the networks,
because microbe–microbe connections in the network may be
due to random chance. We randomized our early, mid, and
late successional datasets (n = 10 randomizations for each
successional stage) using randomizeMatrix() in picante (Kembel
et al., 2010) using the method that randomizes abundances within
taxa and maintains species occurrence frequency. Then we ran
the joint distribution modeling analysis on this randomized data,
assessed the number of significant network connections, and
converted this to a percent by dividing by the number of network
connections in models using our observed data.

Second, we did simulations to test the effect of taxonomic
richness on the number of network connections. Our datasets had
two properties that we wanted to preserve in our simulated data,
(1) our late successional plots had the highest taxonomic richness,
but (2) despite high richness, after applying our frequency cutoff

(only modeling species that were present in ≥12 plots, see
above), the late succession dataset had fewer taxa that were
included in joint distribution modeling compared to early and
mid succession datasets (in other words, most of the diversity
in late successional plots comprised infrequent taxa). Therefore,
we simulated count datasets that varied in species richness
by drawing from the probabilities (relative abundances) of the
bacterial data from our early and late successional plots. We
used a Dirichlet–multinomial distribution using the rmultinom()
function and the rdirichlet() function from the MCMCpack
package (Martin et al., 2011) as in Faust et al. (2015). For each
simulation set, we simulated 25 samples with 2000 reads. We
performed joint distribution modeling on these simulated data
using only latent variables and assessed the number of significant
network connections. Then we repeated the simulations 25 times
each for “early” and “late” successional stages. This generated
a dataset (n = 50) with variability in mean total taxonomic
richness and variability in the richness of frequent species
(passing our ≥ 12 frequency cutoff). We assessed the effect
of species richness and number of taxa used in modeling on
number of network connections and network complexity using
linear regression.

Third, because our early, mid, and late successional datasets
had different numbers of taxa that passed our frequency
cutoff (306, 301, and 273, respectively) and were included in
distribution modeling, we subsampled our data to make sure that
the network complexity patterns were robust to the number of
taxa in the analysis. For the early and mid successional plots,
we randomly chose 273 taxa out of the 306 and 301 taxa,
respectively, and performed distribution modeling and assessed
network complexity (n = 10 times for each successional stage).

Fourth, because the PCA (Supplementary Figure S3) showed
that the late successional plots comprised a greater range
in variability compared to early or mid successional plots,
we did subsetting and modeling to ensure that this did not
affect our results. We chose a similar range in PCA Axis 1
(approximately 0.35 Axis 1 units), and randomly chose 12 plots
from early, mid, and late successional categories within that
range (12 plots was the greatest number of late successional
plots that could be obtained within that range). We performed
distribution modeling and assessed network complexity for these
three reduced models.

RESULTS

Diversity and Composition
Across our microbial datasets, phylogenetic diversity of small
eukaryotes and microfauna increased over succession (Figure 1).
ASV richness of fungi, small eukaryotes, and microfauna
increased over succession (Figure 1 and Supplementary
Figure S5), and taxonomic evenness of bacteria, small
Eukaryotes, and microfauna increased over succession
(Figure 1). The proportion of rare (low abundance) taxa
was highest in late succession for small Eukaryotes and soil
microfauna, but did not change over succession for bacteria
and fungi (Supplementary Figure S5). The average frequency
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FIGURE 1 | Diversity and evenness of microbial communities across succession: bacteria (A,E), fungi (B,F), small eukaryotes (C,G), and soil microfauna (D,H). For
bacteria, small eukaryotes, and soil microfauna, the diversity metric is Faith’s phylogenetic diversity, which is a measure of taxonomic richness. For Fungi, the metric
is ASV richness (Chao1), since the ITS region cannot be aligned to give phylogenetic information. Successional stage does not have a significant effect on bacterial
diversity (F2,72 = 1.82, P = 0.17), but does affect fungi (F2,72 = 3.41, P = 0.039), small eukaryotes (F2,72 = 21.01, P < 0.001), and soil microfauna (F2,72 = 54.23,
P < 0.001). Successional stage affects evenness of bacteria (F2,72 = 5.28, P = 0.007), small Eukaryotes (F2,72 = 3.36, P = 0.040), and microfauna (F2,72 = 10.65,
P < 0.001), but not fungi (F2,72 = 1.96, P = 0.15). Results of Tukey post hoc tests for comparing multiple treatments are shown as letters. Values shown are means
and standard errors. Note that the y-axis scales are different for each taxonomic group.

(number of plots) in which taxa were present decreased
over succession for bacteria, fungi, and small Eukaryotes;
however, the opposite trend was present in the soil microfauna
(Supplementary Figure S5).

Species composition also changed considerably across
the gradient. RDA ordinations showed that successional
stage explained 8.2–10.2% (P < 0.001) of the variance in
ASV composition of bacteria, fungi, small eukaryote, and
soil microfauna communities (Table 1 and Supplementary
Figure S6). Relative abundance of some photosynthetic bacteria
and eukaryotes (Cyanobacteria, Chlorophyta) decreased
over succession (Figure 2). Heterotrophic members of the
Verrucomicrobia, Planctomycetes, and Stramenopiles increased
in abundance. The Ascomycota increased over succession,
whereas the Mortierellomycota decreased by about half
(Figure 2B). No significant patterns were seen at the phylum
level for the soil microfauna (Figure 2D).

TABLE 1 | Permutational multivariate analysis of variance testing the effect of
successional stage on community composition for the four microbial groups.

Variance explained Pseudo-F P

Bacteria 9.3% 3.71 <0.001

Fungi 10.2% 4.09 <0.001

Small eukaryotes 8.2% 3.21 <0.001

Soil microfauna 8.2% 3.20 <0.001

For ordination biplots, see Supplementary Figure S6.

Microbial Networks
Microbial networks decreased in complexity across the
successional gradient (Figure 3 and Table 2). Complexity
(measured as linkage density, the average number of connections
per taxon) decreased from 16.7 to 6.9 to 4.7. Both the number
of taxa involved in the networks and the number of correlations
decreased over succession (Table 2). The majority of network
interactions were positive, and the percentage of positive
interactions was highest in late succession (early: 77.9%, mid:
82.0%, late: 88.9%). The number of photosynthetic microbes in
networks decreased over succession (Table 2). Soil microfauna
increased slightly in networks over succession, with one taxon
present in early and mid successional networks and two in the
late successional network. Plants were present only once in the
networks, in late succession (the grass Trisetum spicatum).

Multiple tests showed that our networks were robust and
that the observed pattern of increasing taxonomic diversity but
decreasing network complexity over succession is not due to
statistical artifacts. False positive rates in our networks were
very low: networks of randomized data had an average of
1.0 (±0.5), 3.1 (±1.1), and 2.9 (± 0.9) significant microbe–
microbe connections for early, mid, and late succession networks,
respectively, which suggests 0.029, 0.32, and 0.64% of the
interactions in our actual networks may be false positives.
Performing joint distribution modeling on simulated datasets
with varying taxonomic richness showed that neither the total
richness nor the richness of frequent species (those passing
our≥ 12 frequency cutoff used in distribution modeling) affected
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FIGURE 2 | Effect of successional stage on the relative abundance of major taxonomic groups of bacteria (A), fungi (B), small eukaryotes (C), and soil microfauna
(D). Note that only abundant groups are shown in the panels. P and H refer to photosynthetic and heterotrophic groups, respectively. The effect of successional
stage on each of the groups was tested using separate anovas, with P-values corrected for false discovery rate using Benjamini–Hochberg: †P < 0.10, ∗P < 0.05,
∗∗P < 0.01, ∗∗∗P < 0.001. Solid lines indicate significant or nearly significant relationships and dashed lines indicate non-significant relationships.

FIGURE 3 | Microbial networks across a successional gradient from early (A), mid (B), and late (C) successional stages. Interactions were assessed using the
residual species-to-species correlation matrix from a hierarchical joint distribution model, which removes the effect of environmental covariates on species
distributions. Displayed here are the correlations whose 95% credible intervals did not overlap zero. Nodes are colored based on taxonomy. See Table 2 for network
statistics.

the number of significant network connections (R2 = 0.0088,
P = 0.24, R2 = 0.026, P = 0.14, respectively) or network complexity
(R2 = 0.021, P = 0.53, R2 = 0.013, P = 0.27, respectively).
Furthermore, when we controlled for the number of taxa passing

the frequency cutoff by subsetting the early and mid successional
datasets so that the same number of species was included in
joint distribution modeling as the late successional dataset, the
pattern of reduced complexity across the successional gradient
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TABLE 2 | Network statistics for microbial networks across a successional
gradient (for the network diagrams, see Figure 3).

Early Mid Late
succession succession succession

Linkage density (complexity) 16.7 6.9 4.7

Nodes (taxa) 209 140 96

Edges (connections) 3481 963 452

% Positive interactions 77.9% 82.0% 88.9%

# Bacteria 168 127 83

# Fungi 20 7 7

# Small eukaryotes 20 5 3

# Soil microfauna 1 1 2

# Plants 0 0 1

# Photosynthetic microbes 12 5 1

Linkage density (complexity) is the average number of edges per node. Nodes
are the number of taxa in each network. Edges are the connections (correlations)
between the nodes.

held: the total number of network connections was still higher in
early and mid successional areas compared to late (2699 ± 48,
774 ± 20 vs. 452) as was the network complexity (number of
interactions per taxon, 14.6± 0.2, 6.2± 0.1, vs. 4.7). Lastly, when
we controlled for the range of PCA axis 1 by running models on
reduced datasets in which early, mid, and late successional plots
all comprised the same spread along PCA axis 1 (0.35 units each),
we found that the pattern of decreasing complexity across the
gradient held as well: the total number of connections (678, 156,
60) and the network complexity (10.9, 5.4, 2.9) decreased across
the gradient in these reduced but standardized datasets.

DISCUSSION

Testing how different metrics of microbial community structure
shift across the landscape is an important step in understanding
the complex, yet unseen, majority that regulates ecosystem
function. Consistent with our hypothesis, we found that
microbial diversity generally increased across the successional
gradient and species composition shifted in ways that benefited
certain groups (heterotrophic Verrucomicrobia, Ascomycota,
heterotrophic Stramenopiles) over others (Cyanobacteria,
Mortierellomycota, Chlorophyta). However, contrary to our
expectations, the complexity (defined as the average number
of interactions per taxon) of core microbial networks (of
frequent taxa) decreased across the successional gradient.
Results highlight a surprising complexity of photosynthetic
and heterotrophic microbial interactions in sparsely vegetated
soil and suggest that different analytical metrics (diversity vs.
microbial interactions) may yield different conclusions about the
complexity of microbial communities.

It is commonly found that microbial diversity increases
(Nemergut et al., 2007; Cline and Zak, 2015) and microbial
composition changes (Nemergut et al., 2007; Dini-Andreote
et al., 2014) over succession. We found that the diversity of
fungi, small eukaryotes, and soil microfauna (but not bacteria)
increases over succession, and we observed marked changes in

composition in all taxonomic groups. The lack of (significant)
increase in bacterial diversity is somewhat surprising, but
previous work has shown that bacteria dominate the active
community of unvegetated soils during the summer months
at this site (Ley and Schmidt, 2002) likely because they have
a much broader range of physiologies (e.g., chemoautotrophy,
N-fixation) than do fungi and other eukaryotes (Schmidt et al.,
2014). Increases in eukaryotic microbial diversity are likely
due, in part, to increases in resource availability (Waldrop
et al., 2006), such that a greater number of taxa are able to
meet minimum resource requirements as resources increase.
Overall, the harsh environmental conditions (low nutrients, low
moisture) in early successional areas may limit microbes in
the same way they limit plant growth. Also, over successional
gradients, the number of complex carbon molecules in the system
increases – saccharides, cellulose, phenolics, lignins, tannins –
and one of the main controls on microbial diversity is the
diversity of carbon substrates (Zhou et al., 2002). The shifting
carbon inputs and changing abiotic conditions are also likely
driving the compositional shifts observed. Some of the changes
in relative abundance observed here agree with findings from
other studies, such as an increase in Verrucomicrobia (Nemergut
et al., 2007) and Acidobacteria (Nemergut et al., 2007; Yarwood
and Högberg, 2017) over succession and an abundance of
cyanobacteria (Schmidt et al., 2008; Zumsteg et al., 2012; Yarwood
and Högberg, 2017) and algae (Kaštovská et al., 2005) in early
successional stages. However, some of our results differ from
prior studies that show decreases in Actinobacteria (Zumsteg
et al., 2012; Poosakkannu et al., 2017) and shifts from Ascomycota
to Basiodiomycota (Zumsteg et al., 2012) with succession in
alpine and arctic areas, suggesting that succession may proceed
differently at different sites even at a broad taxonomic level.

Despite general increases in diversity, we found that core
microbial interaction networks decreased in complexity across
the successional gradient. This same pattern was observed along
a salt marsh chronosequence, where early successional stages
displayed more network complexity (Dini-Andreote et al., 2014).
However, other studies show that microbial network complexity
increases over primary succession in forests (Yarwood and
Högberg, 2017) and secondary succession in old fields (Morriën
et al., 2017). Furthermore, studies show that carbon inputs
increase network complexity during the short-term development
of rhizosphere communities (Shi et al., 2016) and in a CO2
enrichment experiment (Zhou et al., 2011; Tu et al., 2015). All
of these studies (with the exception of Morriën et al., 2017) focus
only on one taxonomic group (bacteria or fungi), so they do not
capture higher order trophic interactions and cascades.

In our system, one explanation for the decrease in network
complexity over succession is the shift in primary producers
and carbon resources across the gradient, from a dominance
of algal/cyanobacterial and recalcitrant aeolian carbon inputs
early in succession to a dominance of labile carbon compounds
from root exudates as plant density increases. Our results show
that early successional soils contain abundant photosynthetic
bacteria and eukaryotes including Cyanobacteria, Chorophyta,
and Stramenopiles (e.g., Diatomea and Chrysophyceae), and
previous work at our study site has measured significant
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microbial carbon fixation in these barren, plant-free soils
(Freeman et al., 2009b). These primary producers could form
the base of food chains and interact with heterotrophs that
feed on algal exudates, senescent algae, and algal detritus
(Cole, 1982). In fact, studies in other systems show that
the chemical constituents of algal exudates differ by species
(Aluwihare and Repeta, 1999) and this affects the composition
of bacterial heterotrophs (Kalscheur et al., 2012). Interactions
between heterotrophic organisms and algae and cyanobacteria
would result in high network complexity in early succession
that would decline in later succession as increasing plant cover
shades out photosynthetic microbes. This is borne out in
the networks: the number of interactions between (frequent)
bacterial heterotrophs and (frequent) photoautotrophic microbes
declines over succession from 205 (early) to 55 (mid) to 1 (late).
Additionally, the fourth most highly connected microbial taxon
(potentially a type of “hub”) in the early successional networks
was a photoautotrophic microbe in the Chloroflexi, whereas all
highly connected taxa in mid and late successional networks were
non-photosynthetic.

Further work at our study site shows that aeolian-deposited
plant litter, particularly windblown pollen grains, is another
important carbon source in early succession (Freeman et al.,
2009a; Naff et al., 2013). Data from our study site indicate
that barren talus soils contain a higher proportion of taxa
that mineralize complex organic matter, like pollen, compared
to vegetated soils (Ley et al., 2001). The breakdown of
recalcitrant organic matter can involve numerous microbial taxa
in decomposition, as bacteria that degrade complex substrates
provide resources for bacteria that feed on metabolic byproducts
or take advantage of monomers released by extracellular enzymes
(Rakoff-Nahoum et al., 2014; Datta et al., 2016). This could
result in complex interaction networks in early succession that
would disappear as more labile plant root exudates dominate
the system; however, this has not been experimentally tested.
In our early succession networks, we found numerous positive
interactions (146) between heterotrophic bacteria and members
of the Ktedonobacteria (Phylum Chloroflexi), a group that is
known to be important in degrading complex polymers, like
pollen (Hug et al., 2013; King and King, 2014), and the number
of heterotrophic bacteria–Ktedonobacteria interactions decrease
over succession (33 in mid succession, four in late succession).
Interestingly, the relative abundance of Ktedonobacteria does not
change over succession, just their involvement in networks.

A major limitation in this study, and many studies
of soil microbial communities, is the limited functional
information about microbial taxa. This makes interpretation
of network patterns across succession difficult. We took
a first step by classifying taxa by mode of nutrition
(photosynthetic/chemoautotrophic/heterotrophic) and by
looking at patterns in groups for which we have information in
our system (e.g., Ktedonobacteria). However, many interactions
in our networks remain unexplained because we do not
know the function of one or both of the interacting taxa (for
37% of the interactions, we do not even know if interacting
organisms are photosynthetic or heterotrophic). As more
functional information becomes available, it may open up

new hypotheses explaining the observed drop in interaction
complexity over succession.

Network Interactions
Although we know very little about many of the taxa in the
networks, we can highlight some interactions present in the
network as proof of concept that the networks display realistic
microbial relationships. In late successional networks, the grass
Tristum spicatum was positively associated with a bacterium in
the Sinobacteraceae, which has been shown to be a root associate
of other plants (Tanaka et al., 2018). Trisetum was also positively
associated with the Archaean, Candidatus Nitrososphaera, an
ammonia oxidizing prokaryote (the first step in nitrification)
(Rosenberg et al., 2014f). Archaeans are increasingly recognized
as important plant symbionts especially in alpine areas (Taffner
et al., 2018), and evidence suggests that Trisetum tends to prefer
nitrate uptake to ammonium (Miller and Bowman, 2002). In late
successional communities, we found relationships (positive and
negative) between a bacterial-feeding nematode in the Plectidae
(Yeates et al., 1993) and 28 different bacteria; both positive
and negative relationships could be suggestive of consumption,
depending on whether the predator limits prey availability or
is limited by prey availability (Halliwell and Macdonald, 1996).
Similarly, in early successional networks, we found relationships
between a predatory nematode in the Nygolaimidae (Yeates
et al., 1993) and 31 different eukaryotes, bacteria, and fungi. We
also found positive correlations in mid succession communities
between a bacterial feeding Heterolobosean amoeba (Brown et al.,
2012; Pánek and Cepicka, 2012) and 15 bacterial taxa. And in
early successional communities, we found correlations among
two filter-feeding (subclass Scuticociliatia and Hypotrichia)
ciliates and 41 different bacteria, which likely indicate feeding
relationships (Lee and Capriulo, 1990; Jurgens and Simek, 2000).
Overall, despite the lack of functional information for many of the
microbial taxa in our networks, the interactions discussed here
suggest that the methods used produce interpretable results.

Limitations
While the hierarchical joint distribution modeling yielded
realistic microbial relationships, had low false positive rates,
and was not highly influenced by species richness like other
correlational approaches (Faust et al., 2015), there are limitations.
As with any correlation-based analysis, a key limitation in
this work is that we cannot definitively conclude that all
correlations represent interactions. While we attempted to
isolate interactions per se by using hierarchical joint distribution
modeling and removing the effect of environmental covariates,
the residual correlations could represent shared niches that were
not parceled out by the four chosen environmental covariates. For
example, in early succession, there were five positive correlations
among photosynthetic microbes (bacteria and algae), which
might indicate that they share the same high light niche.
Similarly, we did not include specific carbon substrates in the
joint distribution model, so correlations among heterotrophic
microbes may indicate shared niches specializing on a particular
substrate (e.g., chitin, cellulose). We suggest that the putative
interactions discovered by combining joint distribution modeling
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with network analysis be taken as hypotheses, which can be tested
with future studies.

Our network analysis, by statistical necessity, only focuses on
interactions among core, frequent microbial taxa. The analysis
does capture a fairly wide range of taxon abundance: for example,
for bacteria in early succession, the average relative abundance
of taxa in the network ranged two orders of magnitude from
0.00051 to 0.057, and species with higher relative abundance
were no more likely to be included in the network (i.e., have
interactions with other microbes) vs. not. That said, there were
many infrequent taxa that we could not attempt to model:
in early succession, there were a total of 8442 taxa (bacteria,
fungi, small eukaryotes, soil microfauna, plants) in the plots,
but only 306 were frequent enough (present in > 11 plots) to
be considered in the joint distribution modeling. It is difficult
to predict how interactions with infrequent taxa would change
network structure. Work on plants suggests that rare species
may be facilitated more than dominant species (Choler et al.,
2001); however, predation may have the opposite pattern (rare
species may escape predation) (Murdoch and Oaten, 1975).
Understanding the functioning of the rare biosphere is one
of the major challenges in microbial ecology today, and new
technologies and analytical methods are being developed to probe
these rare community members (Jia et al., 2018).

Integrating diversity, species composition, and interaction
networks gives us a comprehensive assessment of how systems
change across succession at the community level; however, our
methods do not address how ecosystem properties shift across
succession. While there is a large literature on the link between
biodiversity and ecosystem function (e.g., Hooper et al., 2005),
there is scant information on the impact of network complexity
on ecosystem level properties. One previous study showed
that microbial network complexity is associated with increased
efficiency of carbon uptake (Morriën et al., 2017), and by
attempting to isolate interactions per se, our work provides some
understanding of energy flow through an ecosystem since many
interactions represent trophic relationships. The implications of
network complexity for nutrient cycling and ecosystem function
are a topic that is ripe for future studies.

CONCLUSION

Microbes control many key aspects of ecosystem function, and
ecologists have well documented the changes in diversity and
composition of microbial communities across environmental
gradients. However, less is known about how the network
structure of microbes shifts across the landscape, and whether
patterns in the complexity of species interactions follow

patterns in complexity of diversity. Here we find that diversity
increases across a successional gradient but network complexity
declines. While much work remains to be done regarding the
interpretation and implications of ecological network structure,
using hierarchical joint distribution modeling to generate
interaction networks is an important first step toward elucidating
potential species interactions and important microbial players.
The more we learn about the organization of microbial
communities, the more we can leverage them for the many
ecosystem services they provide.
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